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ABSTRACT

An arbitrarily oriented PML is introduced by using
complex space mapping, for more flexible meshing of
microwave engineering problems. The PML can be
oriented in any direction. The discussion is extended
to two-direction PMLs for matching the interface be-
tween one-direction PMLs, and three-direction PMLs
for two-direction ones. Numerical result is presented.

INTRODUCTION

Since Berenger [1] introduced a novel concept about
a non-physical medium, Perfectly Matched Layer
(PML), for absorbing propagating electromagnetic
waves, a number of developments about its theory and
application have been contributed by the community.
Dozens of papers have been published on this topic,
which are not cited here due to requirement for brevity.
It has been noticed that most of the theoretical discus-
sion and applications are limited to the orthodox PML
structure in which PMLs are oriented along Cartesian
coordinate axes. To remove this limitation from prac-
tical PML structures, especially for flexible finite el-
ement meshing, arbitrarily oriented PMLs are intro-
duced by the authors. The facets of this kind of PML
are still planes, but they can be oriented in any direc-
tion without limitation, as shown in Fig. 1. This char-
acteristic provides more flexibility to construct PML
structures fitting the complex geometry of engineering
problems.

FORMULATION

To find the generalized differential operator for a one-
direction PML oriented in the n direction, firstly the
operator is defined in a new rectangular coordinate sys-
tem (n,t,7) as shown in Fig. 2, where it = &ng +yn, +
in,, t = @ty + gty + 2t, and 7 = &7, + §7, + i7, are
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Figure 1: 2D Display of Arbitrarily Oriented PMLs

y

T

Figure 2: 2D Display of Rotated Coordinates

the unity vectors in normal and tangential directions
respectively, by using complex mapping scale s,, along
n direction, similar to mapping along the Cartesian
coordinates [2, 3]. Then the definition is transformed
into Cartesian coordinate system, which is the common
coordinate system for various PMLs.

[D]} = ﬁ—2+t—+7'— (1)
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where the items of the matrix [D]?" are given in (8).
Finally, a few identical relationships, n2 +t2 + 72 = 1,
Ngny +tzty + 7,7, = 0 and so on , are applied to obtain
(9).

Similarly, the operator for two- and three- direction
PMLs are derived as follows. The explanations of the
matrices [D]} " and [D]5 "7 are listed in (10) and
(11). Details of the formulation will be provided in the
full conference paper.
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DESIGN OF MAPPING
SCALES FOR TWO- AND
THREE-DIRECTION PMLS

At the edges between two one-direction PMLs, a two-
direction PML is needed to ’buffer’ mismatch between
the two one-direction PMLs, as shown in Fig. 1. To
match ny PML, along n; direction the two-direction
PML must use the same scale as that of n; PML, s;.
For ny PML, s5 must be used along no direction. When
the two directions are not perpendicular to each other,
designing the two-direction PML generally becomes
more difficult. Fortunately, a simple solution has been
found by using a common scale s = s; = s» for both
one-direction PMLs. Therefore the common scale can
be applied in both directions of the ’buffer’ PML. It
can be proved that all coplanar two-direction PMLs
are equivalent to each other when a common mapping
scale is applied in both directions for the PMLs. The
equation is directly delivered as follows for brevity. A
similar design is used for three-direction PMLs.

VQ“ —t1 (Snl =5, = S) — v;m—tz (Snz = St, :S) (7)

NUMERICAL EXAMPLE

A simple problem having analytical solution is calcu-
lated to verify the formulations for the arbitrarily ori-
ented PMLs. A cylindrical wave is applied as incident
wave. To save computational costs, only a section be-
tween x and y axes is meshed by finite elements. Three
one-direction and two ’buffer’ PMLs are used to con-
struct an absorbing wall, as shown in Fig. 3. Electro-
magnetic fields are excited by the boundary condition
on the inner boundary. In free space between the in-
ner boundary and the PMLs, a very good agreement
between the finite element results and the analytical
solution is achieved within an error range of 0.1%.

CONCLUSION

Electromagnetic equations for arbitrarily oriented
PMLs are introduced using the complex space map-
ping method. Configuration of a matched PML struc-
ture is discussed. In the calculated example, the good
agreement between the numerical and analytical solu-
tions shows that the radiation wave is absorbed by the
PML absorber.
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UNITS
Length icm
Flux density  :gauss
Magnetic field : oersted
Scalar potential : oersted-cm
Vector potential : gauss-cm
Conductivity — :Scm™
Current density : A cm”®

Power W
Force N
Energy

J
Electric field  :Vecm

PROBLEM DATA
xynxy05.soprab
SOPRANO-ss analysis
Frequency = 1.0E+10
Case No 1of 1

2352 elements
3786 nodes
Shape funct. fields

Nodal coil fields

AC time=0.0
LOCAL COORDS.
Xlocal =0.0
Ylocal =0.0
Zlocal =0.0
Theta =0.0
Phi =0.0
Psi =0.0
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Figure 3: Mesh of Arbitrarily Oriented PML and Inner Boundary Surface
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